Part Number Hot Search : 
AC108 KTD1028 S06NF R1005 01300 355116 SI53304 30C01M
Product Description
Full Text Search
 

To Download IKW40T120 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IKW40T120 trenchstop series ifag ipv td vls 1 rev. 2.3 12.03.2013 ? low loss duopack : igbt in trenchstop and fieldstop technology with soft, fast recovery anti-parallel emitter controlled he diode ? best in class to247 ? short circuit withstand time ? 10 ? s ? designed for : - frequency converters - uninterrupted power supply ? trenchstop and fieldstop technology for 1200 v applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior ? npt technology offers easy parallel switching capability due to positive temperature coefficient in v ce(sat) ? low emi ? low gate charge ? very soft, fast recovery anti-parallel emitter controlled he diode ? qualified according to jedec 1 for target applications ? pb-free lead plating; rohs compliant ? complete product spectrum and pspice models : http://www.infineon.com/igbt/ type v ce i c v ce(sat ),tj=25c t j,max marking code package IKW40T120 1200v 40a 1.7v 150 ? c k40t120 pg-to-247-3 maximum ratings parameter symbol value unit collector-emitter voltage v c e 1200 v dc collector current t c = 25 ? c t c = 100 ? c i c 75 40 a pulsed collector current, t p limited by t jmax i c p u l s 105 turn off safe operating area v ce ? 1200v, t j ? 150 ? c - 105 diode forward current t c = 25 ? c t c = 100 ? c i f 80 40 diode pulsed current, t p limited by t jmax i f p u l s 105 gate-emitter voltage v g e ? 20 v short circuit withstand time 2) v ge = 15v, v cc ? 1200v, t j ? 150 ? c t s c 10 ? s power dissipation t c = 25 ? c p t o t 270 w operating junction temperature t j -40...+150 ? c storage temperature t s t g -55...+150 1 j-std-020 and jesd-022 2) allowed number of short circuits: <1000; time between short circuits: >1s. pg-to-247-3 g c e ? ?
IKW40T120 trenchstop series ifag ipv td vls 2 rev. 2.3 12.03.2013 ? soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
IKW40T120 trenchstop series ifag ipv td vls 3 rev. 2.3 12.03.2013 ? thermal resistance parameter symbol conditions max. value unit characteristic igbt thermal resistance, junction ? case r t h j c 0.45 k/w diode thermal resistance, junction ? case r t h j c d 0.81 thermal resistance, junction ? ambient r t h j a 40 electrical characteristic, at t j = 25 ? c, unless otherwise specified parameter symbol conditions value unit min. typ. max. static characteristic collector-emitter breakdown voltage v ( b r ) c e s v g e = 0v , i c = 1 .5m a 1200 - - v collector-emitter saturation voltage v c e ( s a t ) v g e = 15 v , i c = 40 a t j =2 5 ? c t j =1 2 5 ? c t j =1 5 0 ? c - - - 1.7 2.1 2.3 2.3 - - diode forward voltage v f v g e = 0v , i f = 4 0 a t j =2 5 ? c t j =1 2 5 ? c t j =1 5 0 ? c - - - 1.75 1.75 1.75 2.3 - - gate-emitter threshold voltage v g e ( t h ) i c = 1. 5m a, v c e = v g e 5.0 5.8 6.5 zero gate voltage collector current i c e s v c e = 12 0 0v , v g e = 0v t j =2 5 ? c t j =1 5 0 ? c - - - - 0.4 4.0 ma gate-emitter leakage current i g e s v c e = 0v , v g e =2 0 v - - 600 na transconductance g f s v c e = 20 v , i c = 40 a - 21 - s integrated gate resistor r g i n t 6
IKW40T120 trenchstop series ifag ipv td vls 4 rev. 2.3 12.03.2013 ? dynamic characteristic input capacitance c i s s v c e = 25 v , v g e = 0v , f = 1 mh z - 2500 - pf output capacitance c o s s - 130 - reverse transfer capacitance c r s s - 110 - gate charge q g a t e v c c = 96 0 v, i c =4 0 a v g e = 15 v - 203 - nc internal emitter inductance measured 5mm (0.197 in.) from case l e - 13 - nh short circuit collector current 1) i c ( s c ) v g e = 15 v , t s c ? 10 ? s v c c = 6 0 0 v, t j = 25 ? c - 210 - a switching characteristic, inductive load, at t j =25 ? c parameter symbol conditions value unit min. typ. max. igbt characteristic turn-on delay time t d ( o n ) t j =2 5 ? c , v c c = 60 0 v, i c = 4 0 a, v g e = 0/ 15 v , r g = 15 ? , l ? 2 ) =1 8 0n h, c ? 2 ) = 3 9p f energy losses include ?tail? and diode reverse recovery. - 48 - ns rise time t r - 34 - turn-off delay time t d ( o f f ) - 480 - fall time t f - 70 - turn-on energy e o n - 3.3 - mj turn-off energy e o f f - 3.2 - total switching energy e t s - 6.5 - anti-parallel diode characteristic diode reverse recovery time t r r t j =2 5 ? c , v r = 6 00 v , i f = 4 0 a, d i f / d t =8 0 0 a/ ? s - 240 - ns diode reverse recovery charge q r r - 3.8 c diode peak reverse recovery current i r r m - 28 a diode peak rate of fall of reverse recovery current during t b d i r r /d t - 370 - a/ ? s 1) allowed number of short circuits: <1000; time between short circuits: >1s. 2) leakage inductance l ? a nd stray capacity c ? due to dynamic test circuit in figure e.
IKW40T120 trenchstop series ifag ipv td vls 5 rev. 2.3 12.03.2013 ? switching characteristic, inductive load, at t j =150 ? c parameter symbol conditions value unit min. typ. max. igbt characteristic turn-on delay time t d ( o n ) t j =1 5 0 ? c v c c = 60 0 v, i c = 4 0 a, v g e = 0/ 15 v , r g = 1 5 ? , l ? 1 ) =1 8 0n h, c ? 1 ) = 3 9p f energy losses include ?tail? and diode reverse recovery. - 52 - ns rise time t r - 40 - turn-off delay time t d ( o f f ) - 580 - fall time t f - 120 - turn-on energy e o n - 5.0 - mj turn-off energy e o f f - 5.4 - total switching energy e t s - 10.4 - anti-parallel diode characteristic diode reverse recovery time t r r t j =1 5 0 ? c v r = 6 00 v , i f = 4 0 a, d i f / d t =8 0 0 a/ ? s - 410 - ns diode reverse recovery charge q r r - 8.8 - c diode peak reverse recovery current i r r m - 36 - a diode peak rate of fall of reverse recovery current during t b d i r r /d t - 330 a/ ? s 1) leakage inductance l ? a nd stray capacity c ? due to dynamic test circuit in figure e.
IKW40T120 trenchstop series ifag ipv td vls 6 rev. 2.3 12.03.2013 ? i c , c o l l e c t o r c u r r e n t 10hz 100hz 1khz 10khz 100khz 0a 20a 40a 60a 80a 100a t c =110c t c =80c i c , c o l l e c t o r c u r r e n t 1v 10v 100v 1000v 0,1a 1a 10a 100a dc 10s t p =3s 50s 500s 20ms 150s f , switching frequency v ce , collector - emitter voltage figure 1. collector current as a function of switching frequency ( t j ? 150 ? c, d = 0.5, v ce = 600v, v ge = 0/+15v, r g = 15 ? ) figure 2. safe operating area ( d = 0, t c = 25 ? c, t j ? 150 ? c; v ge =15v) p t o t , p o w e r d i s s i p a t i o n 25c 50c 75c 100c 125c 0w 50w 100w 150w 200w 250w i c , c o l l e c t o r c u r r e n t 25c 75c 125c 0a 10a 20a 30a 40a 50a 60a 70a t c , case temperature t c , case temperature figure 3. power dissipation as a function of case temperature ( t j ? 150 ? c) figure 4. collector current as a function of case temperature ( v ge ? 15v, t j ? 150 ? c) i c i c
IKW40T120 trenchstop series ifag ipv td vls 7 rev. 2.3 12.03.2013 ? i c , c o l l e c t o r c u r r e n t 0v 1v 2v 3v 4v 5v 6v 0a 10a 20a 30a 40a 50a 60a 70a 80a 90a 100a 15v 7v 9v 11v 13v v ge =17v i c , c o l l e c t o r c u r r e n t 0v 1v 2v 3v 4v 5v 6v 0a 10a 20a 30a 40a 50a 60a 70a 80a 90a 100a 15v 7v 9v 11v 13v v ge =17v v ce , collector - emitter voltage v ce , collector - emitter voltage figure 5. typical output characteristic ( t j = 25c) figure 6. typical output characteristic ( t j = 150c) i c , c o l l e c t o r c u r r e n t 0v 2v 4v 6v 8v 10v 12v 0a 10a 20a 30a 40a 50a 60a 70a 80a 90a 100a 25c t j =150c v c e ( s a t ) , c o l l e c t o r - e m i t t s a t u r a t i o n v o l t a g e -50c 0c 50c 100c 0,0v 0,5v 1,0v 1,5v 2,0v 2,5v 3,0v 3,5v i c =40a i c =80a i c =25a i c =10a v ge , gate-emitter voltage t j , junction temperature figure 7. typical transfer characteristic (v ce =20v) figure 8. typical collector - emitter saturation voltage as a function of junction temperature ( v ge = 15v)
IKW40T120 trenchstop series ifag ipv td vls 8 rev. 2.3 12.03.2013 ? t , s w i t c h i n g t i m e s 0a 20a 40a 60a 1ns 10ns 100ns t r t d(on) t f t d(off) t , s w i t c h i n g t i m e s ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ns 10 ns 100 ns 1000 ns t f t r t d(off) t d(on) i c , collector current r g , gate resistor figure 9. typical switching times as a function of collector current (inductive load, t j =150c, v ce =600v, v ge =0/15v, r g = 1 5 ? , dynamic test circuit in figure e) figure 10. typical switching times as a function of gate resistor (inductive load, t j =150c, v ce =600v, v ge =0/15v, i c =40a, dynamic test circuit in figure e) t , s w i t c h i n g t i m e s 0c 50c 100c 150c 10ns 100ns t r t f t d(on) t d(off) v g e ( t h ) , g a t e - e m i t t t r s h o l d v o l t a g e -50c 0c 50c 100c 150c 0v 1v 2v 3v 4v 5v 6v 7v min. typ. max. t j , junction temperature t j , junction temperature figure 11. typical switching times as a function of junction temperature (inductive load, v ce =600v, v ge =0/15v, i c =40a, r g = 1 5 ? , dynamic test circuit in figure e) figure 12. gate - emitter threshold voltage as a function of junction temperature ( i c = 1.5ma)
IKW40T120 trenchstop series ifag ipv td vls 9 rev. 2.3 12.03.2013 ? e , s w i t c h i n g e n e r g y l o s s e s 10a 20a 30a 40a 50a 60a 70a 0,0mj 5,0mj 10,0mj 15,0mj 20,0mj 25,0mj e ts * e off *) e on and e ts include losses due to diode recovery e on * e , s w i t c h i n g e n e r g y l o s s e s ? ? ? ? ? ? ? ? ? ? ? 0 mj 5 mj 10 mj 15 mj e ts * e on * *) e on and e ts include losses due to diode recovery e off i c , collector current r g , gate resistor figure 13. typical switching energy losses as a function of collector current (inductive load, t j =150c, v ce =600v, v ge =0/15v, r g = 1 5 ? , dynamic test circuit in figure e) figure 14. typical switching energy losses as a function of gate resistor (inductive load, t j =150c, v ce =600v, v ge =0/15v, i c =40a, dynamic test circuit in figure e) e , s w i t c h i n g e n e r g y l o s s e s 50c 100c 150c 0mj 5mj 10mj 15mj e ts * e on * *) e on and e ts include losses due to diode recovery e off e , s w i t c h i n g e n e r g y l o s s e s 400v 500v 600v 700v 800v 0mj 5mj 10mj 15mj e ts * e on * *) e on and e ts include losses due to diode recovery e off t j , junction temperature v ce , collector - emitter voltage figure 15. typical switching energy losses as a function of junction temperature (inductive load, v ce =600v, v ge =0/15v, i c =40a, r g = 1 5 ? , dynamic test circuit in figure e) figure 16. typical switching energy losses as a function of collector emitter voltage (inductive load, t j =150c, v ge =0/15v, i c =40a, r g = 1 5 ? , dynamic test circuit in figure e)
IKW40T120 trenchstop series ifag ipv td vls 10 rev. 2.3 12.03.2013 ? v g e , g a t e - e m i t t e r v o l t a g e 0nc 50nc 100nc 150nc 200nc 250nc 0v 5v 10v 15v 960v 240v c , c a p a c i t a n c e 0v 10v 20v 10pf 100pf 1nf c rss c oss c iss q ge , gate charge v ce , collector - emitter voltage figure 17. typical gate charge ( i c =40 a) figure 18. typical capacitance as a function of collector-emitter voltage ( v ge =0v, f = 1 mhz) t s c , s h o r t c i r c u i t w i t h s t a n d t i m e 12v 14v 16v 0s 5s 10s 15s i c ( s c ) , s h o r t c i r c u i t c o l l e c t o r c u r r e n t 12v 14v 16v 18v 0a 100a 200a 300a v ge , gate - emittetr voltage v ge , gate - emittetr voltage figure 19. short circuit withstand time as a function of gate-emitter voltage ( v ce =600v , start at t j = 25c ) figure 20. typical short circuit collector current as a function of gate- emitter voltage ( v ce ? 600v, t j ? 150 ? c)
IKW40T120 trenchstop series ifag ipv td vls 11 rev. 2.3 12.03.2013 ? v c e , c o l l e c t o r - e m i t t e r v o l t a g e 0v 200v 400v 600v 0a 20a 40a 60a 1.5us1us0.5us 0us i c v ce i c , c o l l e c t o r c u r r e n t 0v 200v 400v 600v 0a 20a 40a 60a 1.5us1us0.5us 0us i c v ce t , time t , time figure 21. typical turn on behavior (v ge =0/15v, r g = 1 5 ? , t j = 150 ? c, dynamic test circuit in figure e) figure 22. typical turn off behavior (v ge =15/0v, r g = 1 5 ? , t j = 150 ? c, dynamic test circuit in figure e) z t h j c , t r a n s i e n t t h e r m a l r e s i s t a n c e 10s 100s 1ms 10ms 100ms 10 -3 k/w 10 -2 k/w 10 -1 k/w single pulse 0.01 0.02 0.05 0.1 0.2 d =0.5 z t h j c , t r a n s i e n t t h e r m a l r e s i s t a n c e 10s 100s 1ms 10ms 100ms 10 -3 k/w 10 -2 k/w 10 -1 k/w single pulse 0.01 0.02 0.05 0.1 0.2 d =0.5 t p , pulse width t p , pulse width figure 23. igbt transient thermal resistance ( d = t p / t ) figure 24. diode transient thermal impedance as a function of pulse width ( d = t p / t ) r , ( k / w ) ? , ( s ) ? ? 0.159 1.10*10 - 1 0.133 1.56*10 - 2 0.120 1.35*10 - 3 0.038 1.51*10 - 4 c 1 = ? 1 / r 1 r 1 r 2 c 2 = ? 2 / r 2 r , ( k / w ) ? , ( s ) ? ? 0.228 1.01*10 - 1 0.257 1.15*10 - 2 0.238 1.30*10 - 3 0.087 1.53*10 - 4 c 1 = ? 1 / r 1 r 1 r 2 c 2 = ? 2 / r 2
IKW40T120 trenchstop series ifag ipv td vls 12 rev. 2.3 12.03.2013 ? t r r , r e v e r s e r e c o v e r y t i m e 400a/s 600a/s 800a/s 1000a/s 0ns 100ns 200ns 300ns 400ns 500ns 600ns t j =25c t j =150c q r r , r e v e r s e r e c o v e r y c h a r g e 400a/s 600a/s 800a/s 1000a/s 0c 2c 4c 6c 8c t j =25c t j =150c di f /dt , diode current slope di f /dt , diode current slope figure 23. typical reverse recovery time as a function of diode current slope ( v r =600v, i f =40a, dynamic test circuit in figure e) figure 24. typical reverse recovery charge as a function of diode current slope ( v r =600v, i f =40a, dynamic test circuit in figure e) i r r , r e v e r s e r e c o v e r y c u r r e n t 400a/s 600a/s 800a/s 1000a/s 0a 5a 10a 15a 20a 25a 30a 35a 40a t j =25c t j =150c d i r r / d t , d i o d e p e a k r a t e o f f a l l o f r e v e r s e r e c o v e r y c u r r e n t 400a/s 600a/s 800a/s 1000a/s -0a/s -100a/s -200a/s -300a/s -400a/s t j =25c t j =150c di f /dt , diode current slope di f /dt , diode current slope figure 25. typical reverse recovery current as a function of diode current slope ( v r =600v, i f =40a, dynamic test circuit in figure e) figure 26. typical diode peak rate of fall of reverse recovery current as a function of diode current slope ( v r =600v, i f =40a, dynamic test circuit in figure e)
IKW40T120 trenchstop series ifag ipv td vls 13 rev. 2.3 12.03.2013 ? i f , f o r w a r d c u r r e n t 0v 1v 2v 0a 20a 40a 60a 80a 100a 150c t j =25c v f , f o r w a r d v o l t a g e -50c 0c 50c 100c 0,0v 0,5v 1,0v 1,5v 2,0v 40a 25a i f =80a 10a v f , forward voltage t j , junction temperature figure 27. typical diode forward current as a function of forward voltage figure 28. typical diode forward voltage as a function of junction temperature
IKW40T120 trenchstop series ifag ipv td vls 14 rev. 2.3 12.03.2013 ?
IKW40T120 trenchstop series ifag ipv td vls 15 rev. 2.3 12.03.2013 ? i r r m 90% i r r m 10% i r r m di /dt f t r r i f i,v t q s q f t s t f v r di /dt r r q =q q r r s f + t =t t r r s f + figure c. definition of diodes switching characteristics p(t) 1 2 n t ( t ) j ? 1 1 ? 2 2 n n ? t c r r r r rr figure d. thermal equivalent circuit figure e. dynamic test circuit leakage inductance l ? =180nh an d stray capacity c ? =39pf. figure a. definition of switching times figure b. definition of switching losses
IKW40T120 trenchstop series ifag ipv td vls 16 rev. 2.3 12.03.2013 ? published by infineon technologies ag 81726 munich, germany ? 2013 infineon technologies ag all rights reserved. legal disclaimer the information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. with respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, infineon technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. information for further information on technology, delivery terms and conditions and prices, please contact the nearest infineon technologies office ( www.infineon.com ) . warnings due to technical requirements, components may contain dangerous substances. for information on the types in question, please contact the nearest infineon technologies office. the infineon technologies component described in this data sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of IKW40T120

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X